[KUICH] Übungsbeispiele Ausarbeitungen

  • Hi,
    nachdem Bedarf ist und nachdem ich die Beispiele selber gerne aufschreiben will bevor ich Überhaupt keinen Plan hab was wir da gemacht haben :shinner: .. schreib ich mal die Beispiele die wir gerechnet haben "schön" zam. Hier die ersten beiden Beispiele, werd schaun dass ich so zwei pro tag dazugebe bis ich mit den Übungen aufgeholt habe.


    [Edit: Inzwischen sind Beispiele 1 bis 8 oben]


    Wenn wer was zu ergeänzen hat, bitte hier posten. Vor allem im zweiten Beispiel, wofür das V steht ..?


    Wenn wer's schnell braucht, kann ich auch meine schirche Handmitschrift scannen :D .. aber da wir erst wieder am 9. November Übung haben, sollte glaub ich keine Eile sein. Wenn doch, bitte schreien :D

  • Sehr sehr nett!
    Vieln liebn dank dafür!

    I feel confident, nobody can show me a string, i would consider a valid first name, that is also an sql injection attack

  • hi!


    kannst du zufällig auch noch die Bsp. von der 2. Übungsstunde posten?


    das wäre total nett von dir!


    mfg p***

    :borg:
    Im Kampf zwischen dir und der Welt sekundiere der Welt. Franz Kafka (1883-1924)

  • Danke schön. Finde ich viel besser als die Übungsstunde mit Urbanek!

    V'hu-ehn n'kgnath fha'gnu n'aem'nh. V'glyzz k'fungn cylth-a v'el cylth-Cthulhu k'fungn'i. I'a ry'gzengrho. I'a Hydra. (Call of Cthulhu - Dark Corners of the Earth)

  • Update - sind jetzt alle Beispiele die wir bis jetzt gemacht haben, also Beispiele 1 bis 8. Wenn eine "Erklärung" spezifisch wirr erscheint, bitte sagt mir bescheid, ich werd's nochmal versuchen wenn mein Gehirn ein bisschen mehr anwesend ist.


    Bitte aber nicht auf meine Antworten vertrauen, ich hab echt nur soviel von einem Plan wie mir die Übungsstunden vom Urbanek vermitteln - ich les kein Skriptum, und die Kuich Vorlesungen hab ich mir bis jetzt auch gespart - und werds wahrscheinlich so behalten :D


    Vorallem den theoretischen Definitionen und den Verwendungen von den Thermen würd ich nicht trauen. Das einzige dem ich Vertrauen würd sind die Rechenvorgänge, da ich da die Ergebnisse vom Urbanek hab :D .. und ich hoffe, dass das alles ist was wir brauchen werden für den Test.


    Bezüglich Stunde vom Stundenplanstreichen .. ich würd ja ganz moralisch werden und euch sagen, dass ihr es nicht tun sollt .. aber hey, vielleicht krieg ich ja so das nächste mal einen Sitzplatz ;)

  • Quote from SpacecowboyJ

    Hab die Beispiele von heute - 9,10,11,12


    Auch wenn ich wieder am Boden sitzen durfte ;) .. verdammt, wo bleibt mein Mitschreiber-VIP-Status? ;)


    wie gesagt, geh das nächste mal mit einem SpacecowboyJ schild herrein und JEDER wird dir platz machen ;)

  • Quote from W.E.

    Gibt es jetzt eigentlich noch Übungsstunden, und ist morgen eine?


    ich denk schon dass es noch Übungsstunden geben wird, da es ja noch einen 2.Test gibt und genug Beispiele sind ja noch da zum Machen ^^ Ob das morgen noch Stoff ist? Wurde das schon gesagt oder hab ichs eh nicht überhört?

  • hallo spacecowboy!

    erstmal vielen dank für deine mühen!

    hab allerdings einen fehler entdeckt:
    und zwar hast du bei beispiel 18b einen angabefehler. die fünfte klauselmenge lautet {p,-q,r}, du hast aber {p,-q,-r} verwendet.

    das ergebnis lautet in meinem fall: {p,r}
    damit ist die formel bewiesen.

  • Ich hab in der Erklärung einen schlimmen Fehler entdeckt - die Klauseln sind DISJUNKTIONSTHERME. also (x ∨ y), NICHT wie ich geschrieben habe (x ∧ y). Ihr dürft mich prügeln wenn ihr wollt ;-) .. ich werd das am Abend ausbessern.


    Der Fehler ist in der Angabe, ja .. aber auch komplett egal, da man das Element nicht anrühren muss um die Formel zu widerlegen. Beim widerlegen braucht man so wie ich es gemacht habe nur das 1., 6., 3. und 4. Glied.


    Die Klauseln sind alle mit Disjunktionen miteinander verbunden .. wenn man also zeigen kann, das eine Teilmengel and Klauseln unerfüllbar ist, ist die gesamte Menge widerlegt.


    erst einmal die 1. und die 6. Klausel:


    {p,q}
    {p, ¬q}


    Logisch Dargestellt heist das: (p∨q)∧(p∨¬q)


    was dann heißt: das q ist wurscht. Wenn das p nicht 1 ist, kann das ganze nicht zu 1 evaluieren. Also die erste Resolution -


    {p}


    Dann noch das 3. und das 4. Element ..


    {¬p, ¬q}
    {¬p, q}


    Logisch wieder: (¬p∨¬q)∧(¬p∨q)


    Hier ist das q wurscht, das ganze kann nur zu 1 evaluieren, wenn ¬p zu 1 evaluiert .. also hier die zweite Resolution..


    {¬p}


    Jetzt machen wir die Resolution der zwei Resolutionen .. in welcher wir jetzt sehen, dass damit das ganze zu 1 evaluiert, sowohl p und ¬p wahr sein müssen. Was klarerweise nicht geht, wir haben eine Kontradiktion.

  • trotzdem kommt {p,r} raus. auch nach deiner methode, wenn ich dann die resolution an den beiden klauseln 2+5 durchführe.

    oder versteh ich nicht, dass man das nicht tut und die klauselmenge schon widerlegt ist? ist die formel bereits widerlegt wenn ich die resolution an 2 klauseln durchführe und diese 0 ergeben?